skip to main content


Search for: All records

Creators/Authors contains: "Smeaton, Michelle"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    It has been suggested that Ba3In2O6 might be a high-Tcsuperconductor. Experimental investigation of the properties of Ba3In2O6 was long inhibited by its instability in air. Recently epitaxial Ba3In2O6 with a protective capping layer was demonstrated, which finally allows its electronic characterization. The optical bandgap of Ba3In2O6 is determined to be 2.99 eV in-the (001) plane and 2.83 eV along the c-axis direction by spectroscopic ellipsometry. First-principles calculations were carried out, yielding a result in good agreement with the experimental value. Various dopants were explored to induce (super-)conductivity in this otherwise insulating material. Neither A- nor B-site doping proved successful. The underlying reason is predominately the formation of oxygen interstitials as revealed by scanning transmission electron microscopy and first-principles calculations. Additional efforts to induce superconductivity were investigated, including surface alkali doping, optical pumping, and hydrogen reduction. To probe liquid-ion gating, Ba3In2O6 was successfully grown epitaxially on an epitaxial SrRuO3 bottom electrode. So far none of these efforts induced superconductivity in Ba3In2O6, leaving the answer to the initial question of whether Ba3In2O6 is a high-Tcsuperconductor to be “no” thus far.

     
    more » « less
  2. Free, publicly-accessible full text available July 26, 2024
  3. Free, publicly-accessible full text available September 12, 2024
  4. We demonstrate the epitaxial growth of the first two members, and the [Formula: see text] member of the homologous Ruddlesden–Popper series of [Formula: see text] of which the [Formula: see text] member was previously unknown. The films were grown by suboxide molecular-beam epitaxy where the indium is provided by a molecular beam of indium-suboxide [[Formula: see text]O (g)]. To facilitate ex situ characterization of the highly hygroscopic barium indate films, a capping layer of amorphous [Formula: see text] was deposited prior to air exposure. The structural quality of the films was assessed by x-ray diffraction, reflective high-energy electron diffraction, and scanning transmission electron microscopy. 
    more » « less